Distributional learning in multi-objective optimization of recommender systems

نویسندگان

چکیده

Abstract Metrics such as diversity and novelty have become important, beside accuracy, in the design of Recommender Systems (RSs), response increasing users' heterogeneity. Therefore, RSs is now increasingly modelled a multi-objective optimization problem (MOP) for whose solution Multi-objective evolutionary algorithms (MOEAs) been considered. In this paper we focus on k-top recommendation which encoded matrix rows correspond to customers column items. The value novelty, coverage each candidate list, evaluated sample can be represented 3-d histogram encodes knowledge obtained from function evaluations. This enables map space into space, elements are histograms, structured by Wasserstein (WST) distance between histograms. similarity 2 users probabilistic given their construction WST graph nodes weights edges users. clustering takes then place WST-graph. phase difference two top-k lists 3-dimensional derive new selection operators provide better diversification (exploration). algorithm optimization/Wasserstein (MOEA/WST), compared with benchmark NSGA-II, yields hypervolume coverage, particular at low generation counts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

Multi-objective Particle Swarm Optimization Algorithm for Recommender System

This paper models the process of a recommender system as a multiobjective optimization problem, a discrete particle swarm optimization framework is established and has been integrated into multiobjective optimization, consequently, a multiobjective discrete particle swarm optimization algorithm is proposed to solve the modeled optimization problem. Each run of the current mainstream recommender...

متن کامل

Multi-Objective Optimization in Multiagent Systems

Cooperative multiagent systems are used as solution concepts in many application domains including air traffic control, satellite communications, and extra planetary exploration. As systems become more distributed and complex, we observe three phenomena. First, these systems cannot be accurately modeled, rendering traditional model based control methods inadequate. Second, system parameters are...

متن کامل

Multi-objective optimization in service systems

AbstrAct: Muti-objective optimization deals with the simultaneous optimization of two or more conflicting objective functions in real-life systems. This paper deals with the multi-objective optimization in service systems. The goal of service systems is to provide cost-efficient service to customers, while at the same time, reducing the customer waiting time for service. In general, a low cost ...

متن کامل

Multi-objective optimization of water-using systems

Industrial water systems often allow efficient water uses via water reuse and/or recirculation. The design of the network layout connecting water-using processes is a complex problem which involves several criteria to optimize. Most of the time, this design is achieved using Water Pinch technology, optimizing the freshwater flow rate entering the system. This paper describes an approach that co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Ambient Intelligence and Humanized Computing

سال: 2022

ISSN: ['1868-5137', '1868-5145']

DOI: https://doi.org/10.1007/s12652-022-04356-0